Category Archives: Atomo

Desarrollan una técnica para analizar el carbono 14 en muestras líquidas

Investigadores del Centro Nacional de Aceleradores (CNA, centro mixo Universidad de Sevilla-Junta de Andalucía y CSIC) y la Universidad de Sevilla (US) emplean un sistema que permite convertir muestras líquidas en grafito para analizar la presencia de carbono 14 e indagar su antigüedad y presencia de material orgánico. Estos análisis se realizan con el sistema de espectrometría de masas con aceleradores AMS del CNA.

La determinación de carbono 14 es una herramienta para conocer la presencia de elementos biológicos en muestras como las mezclas biodiésel u otras muestras líquidas de origen total o parcialmente orgánico, como aceites vegetales.

El carbono 14 es un isótopo radioactivo del carbono que puede ser empleado como testigo de la antigüedad de una muestra de origen orgánico, o para comprobar qué cantidad de material orgánico hay en muestras que mezclen materiales orgánicos y derivados del petróleo. A la hora de estudiar estos puntos, es importante el estado en el que se presenta ese elemento, es decir, si es sólido o líquido.

Según Javier Santos, responsable del Servicio de Datación por carbono 14 del Centro Nacional de Aceleradores, “algunas muestras pueden presentarse en estado líquido, por lo que requieren una manipulación más cuidadosa que los productos sólidos”.

En este estudio, presentado este verano en el congreso internacional AMS 13, se ha probado la posibilidad de emplear un sistema de grafitización, es decir, un equipo que permite convertir las muestras en grafito, para poder preparar muestras válidas para ser analizadas a partir de muestras líquidas. Dichas muestras han sido analizadas con el sistema de espectrometría de masas con aceleradores del CNA, AMS.

Durante el estudio se ha comprobado que se obtiene muy buena reproducibilidad en la preparación de réplicas y que el nivel de contaminación introducido en el proceso es muy reducido.

http://www.i-cpan.es

http://www.fpa.csic.es

Determinan una propiedad de la materia tras el Big Bang

Una colaboración internacional donde participan físicos de la Universidade de Santiago de Compostela ha publicado recientemente en Physical Review C la medición más precisa hasta la fecha de una propiedad clave del plasma de quarks y gluones, el estado de la materia que dominó el Universo justo después del Big Bang. Este resultado revela la estructura microscópica de este fluido, un “líquido perfecto” desde el punto de vista de su comportamiento físico. Los resultados se obtuvieron mediante el análisis de datos de las colisiones entre núcleos pesados obtenidos en el Gran Colisionador de Hadrones (LHC) del CERN y el Relativistic Heavy-ion Collider (RHIC) en el Laboratorio de Brookhaven (EE.UU.).

ALICE-hirezf

La colaboración JET es un grupo de físicos teóricos formado principalmente por miembros de universidades de Estados Unidos donde participan varios miembros asociados, entre ellos Néstor Armesto y Carlos Salgado (Universidade de Santiago de Compostela). Su objetivo es extraer las propiedades del llamado plasma de quarks y gluones, el estado de la materia instantes después del Big Bang, cuando la temperatura y densidad eran tan altas que no permitían la formación de protones o neutrones, constituyentes del núcleo atómico.
Continue reading

Lockheed Martin anuncia un nuevo diseño de reactor de fusion

La compañía Lockheed Martin dice que podrá tener un reactor de fusión comercial de 100 Mw de potencia en 10 años.

La compañía Lockheed Martin ha declarado recientemente que va a desarrollar un nuevo tipo de reactor de fusión nuclear por confinamiento magnético mucho más pequeño, compacto y eficiente que los tokamaks.
La idea es la de siempre: mantener un plasma hidrógeno muy caliente en donde se den reacciones fusión nuclear. Como la temperatura necesaria para esto es enorme (100 millones de grados), no se puede construir un contenedor para el plasma hecho de material normal y, en su lugar, se usa una “botella” magnética.

Continue reading

Fusión Nuclear

En física nuclear, fusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado. Simultáneamente se libera o absorbe una cantidad enorme de energía, que permite a la materia entrar en un estado plasmático.

La fusión de dos núcleos de menor masa que el hierro (en este elemento y en el níquel ocurre la mayor energía de enlace nuclear por nucleón) libera energía en general. Por el contrario, la fusión de núcleos más pesados que el hierro absorbe energía. En el proceso inverso, la fisión nuclear, estos fenómenos suceden en sentidos opuestos.

En el caso más simple de fusión, en el hidrógeno, dos protones deben acercarse lo suficiente para que la interacción nuclear fuerte pueda superar su repulsión eléctrica mutua y obtener la posterior liberación de energía.

En la naturaleza ocurre fusión nuclear en las estrellas, incluido el Sol. En su interior las temperaturas son cercanas a 15 millones de grados Celsius.1 Por ello a las reacciones de fusión se les denomina termonucleares. En varias empresas se ha logrado también la fusión (artificial), aunque todavía no ha sido totalmente controlada.

Ver infografia grande
Infografia cortesia de www.consumer.es

Sobre la base de los experimentos de transmutación nuclear de Ernest Rutherford, conducidos pocos años antes, Mark Oliphant, en 1932, observó por primera vez la fusión de núcleos ligeros (isótopos de hidrógeno).

Posteriormente, durante el resto de ese decenio, Hans Bethe estudió las etapas del ciclo principal de la fusión nuclear en las estrellas.

La investigación acerca de la fusión para fines militares se inició en la década de 1940 como parte del Proyecto Manhattan, pero no tuvo éxito hasta 1952. La indagación relativa a fusión controlada con fines civiles se inició en la década de 1950, y continúa hasta el presente.

Laser Megajoule – The Laser Fusion Facility in Europe

El Laser Megajoule (LMJ) es un dispositivo para el confinamiento de fusión inercial, construido en Francia por el directorio de ciencia nuclear de Francia. El Laser Mégajoule fue diseñado para entregar 1,8MJ a su objetivo, haciéndolo tan poderoso como su contraparte, el norteamericano. El Laser Mégajoule es el dispositivo para el confinamiento de fusión inercial más grande construido fuera de Norteamérica, donde los diseñadores del mismo están relacionados con la investigación de armas nucleares. Por el contrario, la tarea principal del Laser Mégajoule serían los cálculos de refinamiento de fusión para la propia industria nuclear de Francia.

Sigue en Fusión Nuclear y en Fusión Nuclear 2 y articulos relacionados.

Registrada la masa atómica más precisa del electrón

Investigadores alemanes han determinado que la masa atómica del electrón es 0,000548579909067 (unos 9,109 x 10-28 gramos), un dato 13 veces más preciso que el registrado hasta ahora. El nuevo valor permitirá profundizar en el modelo estándar de la física y estudiar lo que pueda haber más allá.

Los investigadores han utilizado una triple trampa de Penning para estudiar la masa atómica del electrón. / S.Sturm et al.

Los investigadores han utilizado una triple trampa de Penning para estudiar la masa atómica del electrón. / S.Sturm et al.

El último dato sobre la masa atómica del electrón facilitado por el grupo de trabajo del Comité de Información para Ciencia y Tecnología (CODATA) que se dedica a las constantes fundamentales era 0,00054857990943(23) –medido en unidades de masa atómica unificada (u)–.

Ahora, un equipo alemán liderado desde el Instituto Max-Planck de Física Nuclear ha calculado que ese valor es 0,000548579909067(14)(9)(2), donde los números entre paréntesis corresponden respectivamente a la incertidumbre estadística, sistemática y teórica. En gramos, la masa atómica del electrón ronda los 9,109 x 10-28.

Este valor es un dato clave en física, ya que es responsable de la estructura de los átomos y sus propiedades

Continue reading

Novedades CERN observación de auténticos monopolos magneticos sinteticos

Publicado en el CERN

James Pinfold

El portavoz del experimento MOeDAL en el CERN James Pinfold da su propia visión personal sobre el reciente anuncio del descubrimiento de un monopolo sintética Dirac

Se podría decir que la idea de un monopolo magnético se inició en 1269. En ese año, el erudito, soldado y monje Pierre de Maricourt, era parte del ejército cruzado de Carlos Duque de Anjou, poniendo sitio a la ciudad de Lucera en Italia. Durante el asedio, escribió un documento, la Epistola de Magnete, que identificó por primera vez que un imán tiene un norte y un polo sur. Esto plantea la pregunta: ¿puede haber un solo polo – un monopolo magnético?

CERN-moedal-1

En el siglo XIX la ley de Gauss para el magnetismo, consagrado como una de las ecuaciones de Maxwell, declaró matemáticamente que no existen monopolos magnéticos. Las ecuaciones de Maxwell – que postulan que sólo las cargas eléctricas se producen en la naturaleza – se pueden hacer totalmente simétrica bajo el intercambio de los campos eléctricos y magnéticos, si también existen cargas magnéticas. Un valiente Pierre Curie fue el primero en sugerir que los monopolos magnéticos podrían concebiblemente estar presente en la naturaleza en un artículo publicado en 1894.

Continue reading

Nuevos avances para transformar el ‘calor’ del spin en corriente eléctrica

Investigadores de la Universidad de Zaragoza y centros franceses han transformado una corriente de espín en otra eléctrica mediante un efecto cuántico denominado Rashba. El resultado supone un avance en el desarrollo de la espintrónica, la eléctrónica del futuro.

 Electronic structure of interface Rashba states and principle of experiments. (a) Typical spin-split dispersion curves of a Rashba 2DEG for ?R>0 (adapted from Nechaev et al.28) and (b) typical Fermi contours. An electron flow (that is, a shift of the Fermi contours in the direction of the flow) automatically ind…

Electronic structure of interface Rashba states and principle of experiments.
(a) Typical spin-split dispersion curves of a Rashba 2DEG for ?R>0 (adapted from Nechaev et al.28) and (b) typical Fermi contours. An electron flow (that is, a shift of the Fermi contours in the direction of the flow) automatically ind…

Un equipo de científicos de la Universidad de Zaragoza, junto a colegas franceses, ha contribuido a avanzar en el desarrollo de la espintrónica. Este nuevo tipo de electrónica explota la carga del electrón y la orientación de su espín para obtener dispositivos con nuevas funcionalidades.

El trabajo, que publica la revista Nature Communications, ha permitido generar una corriente de espín (giro o momento angular de las partículas) irradiando un material magnético con radiación microondas. Para hacer la transformación de esa corriente de espín en corriente eléctrica se ha utilizado por primera vez el efecto Rashba inverso utilizando una interfase de bismuto y plata.

El efecto Rashba directo es un efecto puramente cuántico que implica que en un material con acoplo espín-órbita, si los electrones se mueven cerca de su superficie en una dirección paralela a ella, el número de electrones arriba y abajo se descompensa en la dirección perpendicular a la de su movimiento y a la de la superficie.

El aspecto innovador del presente trabajo fue proponer que si se envía una corriente de espín sobre una superficie con fuerte efecto Rashba se producirá el efecto inverso, es decir, su transformación en una corriente de carga en la dirección perpendicular a la de la superficie y a la de la dirección en la que apuntan los espines de los electrones que llegan a ella.

El aspecto innovador del trabajo se relaciona con corrientes de espín, transformación de carga y efectos cuánticos

Estudios teóricos habían apuntado que la interfase plata-bismuto presentaría un efecto Rashba gigante, por lo que se pensó que sería la interfase ideal para hacer la transformación de la corriente de espín en corriente de carga. Los resultados experimentales han demostrado que esto es realmente así, dando lugar a conversiones de corriente de espín en corrientes de carga casi un factor 10 más eficientes que cuando se usa el efecto Hall de espín inverso.

Una de las aplicaciones más prometedoras en las que podría aplicar el descubrimiento es en la transformación de calor en corriente de carga eléctrica, de gran interés en el ámbito energético. Para ello se ha utilizado el efecto Rashba inverso, aplicado por primera vez por el investigador del Instituto de Ciencia de los Materiales de Aragón (ICMA) José María De Teresa, que coordina este trabajo y en el que ha participado el Premio Nobel de Física 2007, Albert Fert (Universidad de Paris Sur), y Laurent Vila (CEA, Grenoble).

Además, el investigador ARAID del Instituto de Nanociencia de Aragón (INA), César Magén, ha realizado los experimentos de caracterización de las muestras por microscopía electrónica de transmisión en el microscopio Titán perteneciente al laboratorio de Microscopías Avanzadas (LMA).

La espintrónica es la rama de la Física que pretende aprovechar las propiedades del espín del electrón para construir dispositivos útiles. A diferencia de la electrónica convencional, que usa una propiedad clásica como es la carga del electrón, la espintrónica se basa en aprovechar una propiedad cuántica del electrón: su espín o momento magnético interno.

Aplicaciones espintrónicas

El ejemplo más conocido de aplicación de la espintrónica es en el diseño de dispositivos que presentan ‘magnetorresistencia gigante’ y que hoy en día usamos para la lectura de la información almacenada en los discos duros. Por este descubrimiento, uno de los co-autores del trabajo, Albert Fert, Doctor Honoris Causa por la Universidad de Zaragoza, recibió el Premio Nobel de Física en 2007 junto al Prof. Grünberg.

Desde hace varias décadas, gracias a los materiales termoeléctricos es posible transformar el calor (como el que se genera por la combustión en el motor de un coche) en energía eléctrica. Sin embargo, este proceso no es por ahora muy eficiente y resulta caro usar esta tecnología. Recientemente, se ha descubierto un efecto llamado efecto Seebeck de espín por el que el calor se aprovecha para generar una corriente de espín.

Uno de los descubridores de este efecto es el investigador japonés Sadamichi Maekawa, que mañana será investido Doctor Honoris Causa por la Universidad de Zaragoza. El profesor Maekawa (Instituto de Materiales, Tohoku University, Japón) es uno de los físicos más relevantes a nivel mundial que trabajan en teoría sobre la espintrónica.

La empresa eléctrica japonesa NEC está desarrollando los demostradores de esa nueva tecnología que transformaría el calor en corriente de espín y de ahí en corriente de carga mediante el efecto Hall de espín inverso. Los resultados presentados en el estudio serían una alternativa, ya que esa transformación de corriente de espín en corriente eléctrica es más eficiente por el efecto Rashba inverso, pudiendo quizá hacer viable esta tecnología tan prometedora en el ámbito energético.

http://www.agenciasinc.es

Referencia bibliográfica:

J. C. Rojas Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J.P. Attané, J. M. De Teresa, C. Magén, A. Fert. “Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials”. Nature Communications (2013) Doi: 10.1038/ncomms3944