Category Archives: Galaxias

Tormenta de rayos gamma en el agujero negro

Los telescopios MAGIC, en el Observatorio del Roque de los Muchachos, en la isla de La Palma, han registrado las llamaradas de rayos gamma más rápidas vistas hasta la fecha, producidas en las cercanías de un agujero negro supermasivo. Los científicos explican este fenómeno mediante un mecanismo similar al que produce los relámpagos en una tormenta. Este resultado, con una importante participación española, aparece publicado hoy en la revista Science.

En la noche del 12 al 13 de Noviembre de 2012 los telescopios MAGIC de rayos gamma, en el Observatorio del Roque de los Muchachos del Instituto de Astrofísica de Canarias (IAC), se encontraban observando el cúmulo de galaxias de Perseo (situado a una distancia de unos 260 millones de años-luz), cuando detectaron este fenómeno insólito proveniente de una de las galaxias del cúmulo, conocida como IC310. Al igual que muchas otras galaxias, IC310 alberga en su centro un agujero negro supermasivo (varios cientos de millones de veces más pesado que el Sol) el cual, de forma esporádica, produce intensas llamaradas de rayos gamma. Lo que sorprendió a los científicos en esta ocasión fue la extrema brevedad de dichas llamaradas, con una duración de tan solo unos pocos minutos.

Continue reading

¿Posible prueba sobre la materia oscura?

Encuentran un exceso de rayos gamma procedente del centro galáctico que atribuyen a la presencia de materia oscura.

At left is a map of gamma rays with energies between 1 and 3.16 GeV detected in the galactic center by Fermi's LAT; red indicates the greatest number. Prominent pulsars are labeled. Removing all known gamma-ray sources (right) reveals excess emission that may arise from dark matter annihilations. Image Credit: T. Linden, Univ. of Chicago

At left is a map of gamma rays with energies between 1 and 3.16 GeV detected in the galactic center by Fermi’s LAT; red indicates the greatest number. Prominent pulsars are labeled. Removing all known gamma-ray sources (right) reveals excess emission that may arise from dark matter annihilations.
Image Credit: T. Linden, Univ. of Chicago

El asunto de la materia oscura probablemente es uno de los más frustrantes de la ciencia moderna. Pese a las décadas transcurridas desde que se propuso su existencia, todavía no se ha conseguido detectar directamente esta esquiva materia. Aunque falsas alarmas ha habido unas cuantas.

 

Known dwarf spheroidal satellite galaxies of the Milky Way overlaid on a Hammer-Aitoff projection of a 4-year LAT counts map (E>1??GeV). The 15 dwarf galaxies included in the combined analysis are shown as filled circles, while additional dwarf galaxies are shown as open circles.

Known dwarf spheroidal satellite galaxies of the Milky Way overlaid on a Hammer-Aitoff projection of a 4-year LAT counts map (E>1??GeV). The 15 dwarf galaxies included in the combined analysis are shown as filled circles, while additional dwarf galaxies are shown as open circles.

La última propuesta parte, otra vez, de los datos tomados por el observatorio espacial Fermi. Según un grupo de científicos del Fermilab, del CfA, del MIT y de University of Chicago un supuesto exceso de energía en forma de rayos gamma registrada por Fermi y procedente del centro galáctico se puede explicar bien si por allí hay materia oscura. Han elaborado incluso un nuevo mapa de la zona.
La presencia de púlsares, la colisión de nubes de gas y otras posibles explicaciones no son suficientes según Dan Hooper y colaboradores para explicar el exceso de energía observado. Sin embargo, si se tiene en cuenta la aniquilación de partículas de materia oscura, entonces los datos encajan mejor.

Continue reading

Investigadores del IAC explican el “exceso” de rubidio observado en estrellas moribundas

Un nuevo modelo de atmósfera estelar, publicado en la revista Astronomy & Astrophysics Letters, pone fin al aparente desacuerdo entre teoría y observación sobre la producción de este exótico elemento radiactivo
prensa848_1111_hi

En la imagen se muestra el espectro de una estrella AGB masiva (puntos blancos) junto con las predicciones de los nuevos modelos de atmósfera (línea amarilla) y de los modelos anteriores sin envoltura (línea azul). El Rubidio es detectado como una línea de absorción muy intensa a una longitud de onda de 7.800 angstroms. Todo esto superpuesto a una impresión artística de una estrella AGB.Créditos: Gabriel Pérez Díaz, Instituto de Astrofísica de Canarias (Servicio Multimedia)

Las estrellas de masa intermedia, en sus últimas fases de evolución, producen una gran cantidad de elementos pesados (ricos en neutrones) – algunos de ellos isótopos radiactivos -, como el rubidio, el tecnecio, el circonio, el ytrio, el lantano o el neodimio. Estos elementos son expulsados hacia la superficie de la estrella y, posteriormente, liberados al medio interestelar. Tras varios estudios sobre la composición química de estas estrellas moribundas, denominadas “estrellas AGB”, un equipo internacional de astrónomos, liderado por investigadores del Instituto de Astrofísica de Canarias (IAC), acaba de publicar un nuevo modelo teórico que explica la sobreabundancia de rubidio observada en las más masivas de este tipo. El nuevo modelo incluye los efectos de la envoltura de gas y polvo que rodea a estas estrellas viejas y que no habían sido considerados en modelos teóricos anteriores.

Continue reading

Dark Matters

The winter conference season is well under way, and what better way to fill my first blog post than with a report from one of the premier conferences in particle and astroparticle physics: the Rencontres de Moriond.

One of the nice things I like about attending a conference is that it lets me step away from my day-to-day work and think again about the wider context of what we do as physicists. In this conference, it was the progress being made in our understanding of dark matter that best seemed to bring together work from many different areas of investigation. (Note that some of the results I will mention were already included in Jessica Levêque’s post No Matter How Hard You Try… Standard Is Standard).

Artist’s impression of dark matter (in blue) surrounding the Milky Way. Credit: ESO/L. Calçada

Artist’s impression of dark matter (in blue) surrounding the Milky Way. Credit: ESO/L. Calçada

Dark matter is the material that holds galaxies and clusters of galaxies together – the evidence for its existence from astronomical measurements is overwhelming. The problem: no one knows what dark matter actually is. None of the particles we know will do the job, not even the elusive neutrinos. All we do know is that it must be electrically neutral, very weakly interacting, and stable over billions of years. But that’s pretty much it.

What to do? Well, we could try to detect collisions between dark matter particles and ordinary atoms. At the conference, the LUX and CDMS collaborations reported their searches to detect this mysterious substance. Neither group saw any evidence of a signal, more or less ruling out potential hints seen by other groups over the last few years. In addition, several searches for dark matter production in the ATLAS and CMS experiments were reported, also with null results.

Continue reading

¿Está compuesta la materia oscura por neutrinos?

Un par de trabajos sugieren que los neutrinos tienen mayor masa de lo pensado y tendrían una gran contribución a la materia oscura.

A estas alturas todos conocemos el problema de materia oscura, esa masa que no vemos y que altera la rotación de las galaxias o contribuye al fenómeno de lentes gravitatorias. Normalmente se propone la existencia de partículas exóticas que den cuenta de esa masa, que es mucho mayor que la masa de la materia visible.
A veces se ha propuesto que sean los neutrinos los que hagan la materia oscura, al fin ya la cabo no interactúan prácticamente con la materia ordinaria. Para poder detectar alguno de los millones de neutrinos que nos atraviesan constantemente se usan miles de números de Avogadro de átomos corrientes y se espera a alguna interacción en un sitio aislado de la radiación natural. Esta baja interacción se debe a que los neutrinos sólo interaccionan con la materia ordinaria a través de la fuerza nuclear débil o la gravedad (que es la más débil de todas las fuerzas).
Hay tres tipos o “sabores” de neutrinos, cada uno asociado al electrón, al muón y al tau. Además, desde hace un tiempo, se ha propuesto la existencia de un cuarto neutrino que no interaccionaría con la materia ordinaria ni siquiera a través de la fuerza nuclear débil, sino que sólo interaccionaría con el resto de los neutrinos y con la gravedad. Tampoco sería capaz de cambiar su sabor. Los neutrinos estériles son un concepto puramente teórico, a diferencia de los otros tres tradicionales, que sí se han observado.

Neutrino mass and effective number constraints, labeled as in Fig. 1 (× indicates the ML model, + its shift from a 9% cluster mass increase). Bottom: S? sterile case for Td (left) and Ad (right). The region excluded by the msDW<7??eV prior is left of the dashed line. Top: A? active case for Td (left) and Ad (right). In all cases the minimal ?m?=0.06??eV, Neff=3.046, and ms=0 is highly excluded.

Neutrino mass and effective number constraints, labeled as in Fig. 1

En un principio se creía que los tres neutrinos tradicionales carecían de masa, pero el descubrimiento de las oscilaciones de neutrinos que hace que unos tipos se transformen en otros (y que resuelve el problema de la paradoja de los neutrinos solares) nos dice que tienen alguna masa. Esta masa es muy pequeña, con una cota inferior es de 0,06 eV. Pero nadie sabe su masa real. Si tuvieran una masa pequeña, pero muy por encima de esa cota, entonces podrían dar cuenta de la materia oscura, pues la cantidad de neutrinos (principalmente primordiales) es inmensa. Por el contrario, si tuvieran una masa un poco superior a esos 0,06 eV, entonces su contribución a la materia oscura sería despreciable.
Una manera de medir la materia oscura es analizando el fondo cósmico de microondas (FCM), que se corresponde a la luz emitida al cabo 380.000 años tras del Big Bang. El FCM contiene pequeñas irregularidades que dan cuenta de varios aspectos del Universo y que permiten testar los distintos modelos cosmológicos. También permite determinar la cantidad de materia oscura.
La distribución de las irregularidades es un reflejo de las fluctuaciones en densidad de materia que había tras el Big Bang. Fue precisamente en donde la densidad era mayor en donde la gravedad pudo actuar y crear más tarde los cúmulos de galaxias. Si se analiza la distribución de cúmulos en una época posterior y se comparan con las irregularidades del FCM se observa que no coinciden del todo. Pero, usando ciertos modelos, se puede deducir, usando la masa que tendrían que tener los neutrinos para que todo encajara.
Al principio del Universo, los neutrinos se moverían a velocidad relativista y no serían agrupados por la fuerza de gravedad. Pero una vez el Universo se enfrío lo suficiente, los neutrinos se moverían más despacio hasta agruparse al igual que la materia normal. El número de cúmulos de galaxias sería un reflejo de la masa de los neutrinos. Cuanto más masivos más contribuirían a la materia oscura.
En un artículo publicado recientemente Richard Battye (University of Manchester) y Adam Moss (University of Nottingham) se analizan los datos del FCM aportados por las misiones WMAP y Planck usando la idea antes expuesta y se llega a la conclusión de que la contribución de los neutrinos podrían dar cuenta de la materia oscura. Algo similar han hecho Mark Wyman (University of Chicago) y sus colaboradores.
En ambos casos proponen dos posibilidades. En la primera los tres neutrinos tradicionales tendrían una masa de 0,32 eV y 0,39 eV respectivamente, con barras de error que tienen una intersección común.
En la segunda sugieren la participación de neutrinos estériles en el escenario. Dependiendo del modelo usado se asigna una masa al neutrino estéril de entre 0,3 eV y 0,5 eV. Al parecer, esta segunda opción encaja mejor que la primera con los datos experimentales.

Continue reading ?

 

Relacionados:

 

Planeando la construcción de la próxima generación de telescopios de neutrinos

Detectan en IceCube Neutrinos de ultra-alta energía

IceCube obtiene evidencias de neutrinos altamente energéticos de origen cósmico

¿Qué criterios se usan para agrupar neutrinos y antineutrinos dentro de la materia o antimateria?

 

¿Está compuesta la materia oscura por neutrinos?

Un par de trabajos sugieren que los neutrinos tienen mayor masa de lo pensado y tendrían una gran contribución a la materia oscura.

A estas alturas todos conocemos el problema de materia oscura, esa masa que no vemos y que altera la rotación de las galaxias o contribuye al fenómeno de lentes gravitatorias. Normalmente se propone la existencia de partículas exóticas que den cuenta de esa masa, que es mucho mayor que la masa de la materia visible.
A veces se ha propuesto que sean los neutrinos los que hagan la materia oscura, al fin ya la cabo no interactúan prácticamente con la materia ordinaria. Para poder detectar alguno de los millones de neutrinos que nos atraviesan constantemente se usan miles de números de Avogadro de átomos corrientes y se espera a alguna interacción en un sitio aislado de la radiación natural. Esta baja interacción se debe a que los neutrinos sólo interaccionan con la materia ordinaria a través de la fuerza nuclear débil o la gravedad (que es la más débil de todas las fuerzas).
Hay tres tipos o “sabores” de neutrinos, cada uno asociado al electrón, al muón y al tau. Además, desde hace un tiempo, se ha propuesto la existencia de un cuarto neutrino que no interaccionaría con la materia ordinaria ni siquiera a través de la fuerza nuclear débil, sino que sólo interaccionaría con el resto de los neutrinos y con la gravedad. Tampoco sería capaz de cambiar su sabor. Los neutrinos estériles son un concepto puramente teórico, a diferencia de los otros tres tradicionales, que sí se han observado.
En un principio se creía que los tres neutrinos tradicionales carecían de masa, pero el descubrimiento de las oscilaciones de neutrinos que hace que unos tipos se transformen en otros (y que resuelve el problema de la paradoja de los neutrinos solares) nos dice que tienen alguna masa. Esta masa es muy pequeña, con una cota inferior es de 0,06 eV. Pero nadie sabe su masa real. Si tuvieran una masa pequeña, pero muy por encima de esa cota, entonces podrían dar cuenta de la materia oscura, pues la cantidad de neutrinos (principalmente primordiales) es inmensa. Por el contrario, si tuvieran una masa un poco superior a esos 0,06 eV, entonces su contribución a la materia oscura sería despreciable.
Una manera de medir la materia oscura es analizando el fondo cósmico de microondas (FCM), que se corresponde a la luz emitida al cabo 380.000 años tras del Big Bang. El FCM contiene pequeñas irregularidades que dan cuenta de varios aspectos del Universo y que permiten testar los distintos modelos cosmológicos. También permite determinar la cantidad de materia oscura.

Continue reading

Los telescopios espaciales Hubble y Spitzer “espían” a una de las galaxias más jóvenes del Universo

Investigadores del Instituto de Astrofísica de Canarias y de la Universidad de La Laguna lideran el equipo internacional que ha analizado las imágenes

magen profunda del cúmulo de galaxias Abell 2744 obtenida con el telescopio espacial Hubble. El recuadro muestra la región alrededor de la galaxia Abell2744_Y1, una de las galaxias más jóvenes del Universo. Crédito: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI); Nicolas Laporte et al. (IAC).

magen profunda del cúmulo de galaxias Abell 2744 obtenida con el telescopio espacial Hubble. El recuadro muestra la región alrededor de la galaxia Abell2744_Y1, una de las galaxias más jóvenes del Universo. Crédito: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI); Nicolas Laporte et al. (IAC).

Un equipo internacional liderado por astrónomos del Instituto de Astrofísica de Canarias (IAC) y de la Universidad de La Laguna (ULL) acaba de completar el primer análisis de las observaciones del cúmulo de galaxias Abell 2744, realizadas coordinadamente con los telescopios espaciales Hubble y Spitzer. Como resultado, estos investigadores han descubierto una de las galaxias más distantes conocidas hasta la fecha, demostrando así el potencial del proyecto “HST Frontier Fields” (Campos Frontera del Hubble). Este trabajo será publicado por la revista científica Astronomy & Astrophysics Letters.

En este análisis también han participado investigadores de dos centros franceses (Institut de Recherche en Astrophysique et Planétologie de Toulouse y Centre de Recherche Astrophysique de Lyon), dos suizos (Universidad de Ginebra y École Polytechnique Federal de Lausanne) y la Universidad de Arizona, en EEUU.

Gracias a la gran calidad de los datos de las imágenes del Hubble, en el rango visible e infrarrojo cercano del espectro, y del Spitzer, en el infrarrojo, los astrofísicos han determinado las propiedades de esta joven galaxia con una precisión mayor que en estudios previos de otras muestras similares. Llamada “Abell2744_Y1”, es unas 30 veces más pequeña que la nuestra, la Vía Láctea, pero está formando nuevas estrellas a un ritmo, al memos, 10 veces mayor. Desde la Tierra, vemos cómo fue esta galaxia 650 millones de años después del Big Bang. Su luz ha viajado por el Universo unos 13.000 millones de años, siendo una de las galaxias más brillantes descubiertas en esas épocas cósmicas tan jóvenes. En Astrofísica, cuanto más lejos se encuentra un objeto, más ha tardado su luz en llegarnos y, por tanto, más joven lo estamos viendo. De ahí que el estudio de Abell2744_Y1 añada nueva información sobre la densidad y las propiedades de las galaxias en el universo temprano.

Continue reading