Category Archives: Modelo Estandar

El CERN hace públicos los primeros datos de los experimentos del LHC

El CERN lanza hoy su portal web de datos abiertos (Open Data), donde pone a disposición de todo el mundo por primera vez los datos de colisiones reales producidos por los experimentos del LHC. Estos datos serán de gran valor para la comunidad científica y se usarán también en proyectos educativos.

“Lanzar el portal Open Data del CERN es un paso importante para nuestra organización. Los datos del programa del LHC están entre los activos más valiosos de los experimentos del LHC, que hoy comenzamos a compartir de forma abierta con el mundo. Esperamos que estos datos abiertos ayuden e inspiren a la comunidad investigadora de todo el mundo, incluidos estudiantes y ciudadanos”, dijo el Director General del CERN Rolf Heuer.

El principio de apertura está contenido en la Convención fundacional del CERN. Todas las publicaciones del LHC se han realizado en acceso abierto (Open Access), de tal forma que todos las pueden leer y usar. Ampliando el alcance de estas medidas, las colaboraciones de los experimentos del LHC aprobaron recientemente políticas de datos abiertos (Open Data) y ofrecerán los datos de las colisiones en los próximos años.

Continue reading

Científicos españoles analizan las posibilidades del LHC en 2015

El nuevo arranque del gran colisionador de hadrones del CERN durante el año que viene, los experimentos sobre neutrinos, el observatorio de rayos gamma CTA y la presencia de investigadores españoles en el laboratorio de física nuclear FAIR serán algunos de los temas que trataron los cerca de 200 investigadores que asisten en Sevilla a la reunión anual del Centro Nacional de Física de Partículas, Astropartículas y Nuclear. La divulgación científica y la transferencia tecnologica también estarán presentes en las jornadas.

Expertos españoles en la física del Gran Colisionador de Hadrones (LHC), la investigación de la estructura nuclear y los experimentos para descubrir el 95% del universo ‘invisible’ se reúnen la semana próxima en Sevilla en las VI Jornadas del Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN). Este congreso, que se celebra por primera vez en la capital hispalense, congrega a 200 investigadores en estos ámbitos de la física, que discutirán sobre los principales avances en sus respectivos campos.

Entre los principales temas a tratar está el programa de investigación previsto para el LHC, el mayor acelerador de partículas del mundo operado por el CERN, que se vuelve a poner en marcha a principios de 2015 tras una larga parada de mantenimiento. Después de descubrir el bosón de Higgs en 2012 con solo dos años de funcionamiento, aparecen nuevos retos como la búsqueda de la supersimetría o la detección de materia oscura. Doscientos investigadores y técnicos españoles participan en el LHC y sus experimentos, con el apoyo del CPAN.
Continue reading

LHCb confirma existencia de una nueva forma de materia exóticos

El Large Hadron Collider beauty (LHCb) colaboración anunció hoy los resultados que confirman la existencia de hadrones exóticos – un tipo de materia que no pueden clasificarse dentro del modelo de quarks tradicional.

Los hadrones son partículas subatómicas que pueden participar en la interacción fuerte, la fuerza que une los protones dentro de los núcleos de los átomos. Los físicos han teorizado desde la década de 1960, y una amplia evidencia experimental ya ha confirmado, que los hadrones están compuestos de quarks y antiquarks que determinan sus propiedades. Un subconjunto de los hadrones, llamados mesones, se forma a partir de pares quark-antiquark, mientras que el resto – bariones – están formados por tres quarks.

Pero desde que se propuso por primera vez los físicos han encontrado varias partículas que no encajan en este modelo de la estructura de los hadrones. Ahora la colaboración LHCb ha publicado una observación inequívoca de una partícula exótica – la Z (4430) – que no encaja en el modelo de quarks.

Continue reading

Científicos de Granada miden la fuerza nuclear fuerte con la mayor precisión hasta la fecha

Investigadores granadinos han determinado la magnitud más precisa de la interacción nuclear fuerte, responsable de la fusión en el interior del Sol, y proponen una nueva forma para la fuerza nuclear, denominada potencial granulado. En su estudio han utilizado más de 8.000 datos experimentales de dispersión entre neutrones y protones.

Científicos de la Universidad de Granada (UGR) han llevado a cabo la determinación más precisa lograda hasta la fecha de la fuerza nuclear, utilizando para ello más de 8.000 datos experimentales de dispersión entre neutrones y protones, recogidos entre los años 1950 y 2013 en aceleradores de partículas de todo el mundo.

Este trabajo ha sido publicado recientemente en la revista Physical Review que edita la Sociedad de Física Estadounidense, y su importancia ha sido resaltada por el editor, que lo ha seleccionado como artículo recomendado. La investigación se realizó íntegramente en la UGR por Rodrigo Navarro Pérez, Enrique Ruiz Arriola yJosé Enrique Amaro, físicos del grupo de investigación Hadrónica del departamento de Física Atómica, Molecular y Nuclear e Instituto Carlos I de Física Teórica y Computacional.

En su trabajo, los investigadores granadinos proponen una nueva forma para la fuerza nuclear, que han denominado “potencial granulado”. Tras el análisis estadístico de los más de 8.000 datos, determinaron que sus resultados tienen una precisión media del 96%.

Continue reading

Los físicos cruzan los dedos para que el satélite Planck confirme el eco del Big Bang

El anuncio de la primera evidencia sobre la inflación cósmica y las ondas gravitatorias cuánticas que surgieron en los inicios del universo ha sido valorado como uno de los grandes descubrimientos del siglo, un hito extraordinario equiparable al del bosón de Higgs. Sinc ha hablado con grandes expertos para entender su alcance y saber cuándo se confirmará. Todas las miradas están puestas ahora en los resultados del satélite Planck.

 El anuncio de la primera evidencia sobre la inflación cósmica y las ondas gravitatorias cuánticas que surgieron tras el Big Bang ha sido valorada por los científicos como uno de los grandes descubrimientos del siglo, un hallazgo extraordinario equiparable al del famoso bosón de Higgs.  Sinc ha hablado con algunos de estos expertos para entender mejor el alcance del descubrimiento y saber cuándo se podría confirmar. Todas las miradas están puestas en los resultados del satélite Planck. Licencia : Creative Commons


El anuncio de la primera evidencia sobre la inflación cósmica y las ondas gravitatorias cuánticas que surgieron tras el Big Bang ha sido valorada por los científicos como uno de los grandes descubrimientos del siglo, un hallazgo extraordinario equiparable al del famoso bosón de Higgs. Sinc ha hablado con algunos de estos expertos para entender mejor el alcance del descubrimiento y saber cuándo se podría confirmar. Todas las miradas están puestas en los resultados del satélite Planck.
Licencia : Creative Commons

 

En el primer instante de la historia del nuestro universo, hace unos 13.800 millones de años, ocurrió algo extraordinario: surgió el espacio-tiempo y se expandió a una velocidad superior a la de luz. Todo sucedió en alrededor de 10-32 segundos, un periodo cortísimo conocido como inflación, marcado por fluctuaciones cuánticas que generaron ondas gravitatorias, la pistola humeante del Big Bang.

Unos 380.000 años más tarde, se enfría el plasma caliente generado por la gran explosión y surge la radiación de fondo de microondas (CMB, por sus siglas en inglés), que desde entonces se observa de forma uniforme por cualquier parte del cielo que miremos.

La huella que dejaron las ondas gravitatorias primigenias en esta radiación CMB es lo que ha observado ahora el telescopio BICEP2 desde la Antártida. Científicos del Centro de Astrofísica Harvard-Smithsonian, en EE UU, han anunciado esta semana este descubrimiento que ha revolucionado a los físicos.
Continue reading

Científicos del LHC y Tevatron anuncian su primer resultado conjunto

Los científicos de los aceleradores de partículas más potentes del mundo, el ya extinto Tevatron (Fermilab, EE.UU.) y el LHC (CERN, Suiza), han unido sus fuerzas, combinado sus datos y producido su primer resultado conjunto. Los investigadores de los cuatro experimentos (ATLAS y CMS del LHC, CDF y DZero de Tevatron) anunciaron ayer en el marco de la conferencia internacional de Moriond (Italia) el considerado mejor valor para la masa del quark top.

This graphic shows the four individual top quark mass measurements published by the ATLAS, CDF, CMS and DZero collaborations, together with the most precise measurement obtained in a joint analysis

This graphic shows the four individual top quark mass measurements published by the ATLAS, CDF, CMS and DZero collaborations, together with the most precise measurement obtained in a joint analysis

Los cuatro experimentos reunieron su poder de análisis de datos para llegar al mejor valor para la masa del quark top, estimada ahora en 173,34 ± 0,76 GeV/c2. Tevatron y LHC son los únicos experimentos en física de partículas del mundo capaces de producir el quark top, la más pesada de las partículas elementales. La enorme masa del quark top, más de 100 veces la del protón, lo convierte en una de las herramientas más importantes para los físicos en su búsqueda para entender la naturaleza del universo.

La nueva medida del valor de la masa del quark top permitirá a los científicos realizar más pruebas con el modelo matemático que describe las conexiones cuánticas entre el quark top, la partícula de Higgs y el portador de la fuerza electrodébil, el bosón W. Los físicos teóricos explorarán cómo este nuevo y más preciso valor cambiará las predicciones sobre la estabilidad del campo de Higgs y sus efectos en la evolución del universo. Además, permitirá a los científicos buscar incoherencias en el Modelo Estándar de Física de Partículas, así como buscar indicios de nueva física.

“El resultado combinado de los datos del CERN y Fermilab para alcanzar la masa más precisa del top quark es un gran ejemplo de la colaboración internacional que se realiza en nuestro campo”, dijo el director de Fermilab, Nigel Lockyer. Por su parte, para el director general del CERN, Rolf Heuer, “la competencia entre colaboraciones experimentales y laboratorios nos estimula, pero una colaboración como esta apuntala el esfuerzo global de la física de partículas, y es esencial en el avance de nuestro conocimiento del universo en el que vivimos”.

Más de seis mil científicos de más de 50 países participan en las cuatro colaboraciones internacionales, con una importante participación española en todas ellas. Los experimentos CDF y DZero descubrieron el quark top en 1995, y el Tevatron produjo alrededor de 300.000 quarks top en sus 25 años de vida, finalizada en 2011. Desde su puesta en marcha en 2009, el LHC ha producido cerca de 18 millones de quarks top, convirtiéndose en la mayor factoría del mundo en la producción de esta partícula.

http://www.i-cpan.es

http://home.web.cern.ch/about/updates/2014/03/lhc-and-tevatron-scientists-announce-first-joint-result

http://press.web.cern.ch/press-releases/2014/03/international-team-lhc-and-tevatron-scientists-announces-first-joint-result

http://arxiv.org/abs/1403.4427

Download:

 

Primera evidencia de la inflación cósmica y las ondas gravitacionales

Los físicos acarician el sueño de una teoría unificada

Los astrofísicos llevaban décadas esperando este momento y los datos han llegado desde el radiotelescopio BICEP2 en el Polo Sur. Un equipo del Centro de Astrofísica Harvard-Smithsonian, en EE UU, anuncia hoy tres grandes descubrimientos relacionados: la primera prueba directa de que existen las ondas gravitacionales predichas por Einstein, la ansiada evidencia de la inflación cósmica y la apertura de una vía para unificar las fuerzas fundamentales de la naturaleza y la gravedad cuántica.

El telescopio BICEP2 ha detectado desde el Polo Sur señales de los primeros instantes del universo. / Steffen Richter/Harvard University

El telescopio BICEP2 ha detectado desde el Polo Sur señales de los primeros instantes del universo. / Steffen Richter/Harvard University

Hace casi 14 mil millones de años, nuestro universo irrumpió con una ‘chispa’ extraordinaria que inició el Big Bang. En la primera y fugaz fracción de un segundo, el universo se expandió de forma exponencial, extendiéndose mucho más allá de lo que alcanzan a ver los mejores telescopios. Hasta la fecha todo esto era la teoría.

Pero ahora, investigadores de la colaboración BICEP2, con datos de un telescopio del mismo nombre situado en el Polo Sur, anuncia la primera evidencia directa de esta inflación cósmica. Sus datos también representan las primeras imágenes de las ondas gravitacionales u ondulaciones en el espacio-tiempo. Estas ondas se han descrito como los “primeros temblores del Big Bang”.
Continue reading