Tag Archives: Biologia

Los peces mesopelágicos cambian los datos: la biomasa de peces en el océano es 10 veces superior a lo estimado

Con un stock estimado hasta ahora en 1.000 millones de toneladas, los peces mesopelágicos dominan la biomasa total de peces en el océano. Sin embargo, un equipo de investigadores con participación del Consejo Superior de Investigaciones Científicas (CSIC) ha descubierto que su abundancia podría ser al menos 10 veces superior. Los resultados, publicados en la revista Nature Communications, se basan en observaciones acústicas llevadas a cabo durante la circunnavegación de la expedición Malaspina.

Los peces mesopelágicos, como los peces linterna (Myctophidae) y los ciclotónidos (Gonostomatidae), viven en la zona de penumbra del océano, entre los 200 y los 1.000 metros de profundidad. Son los vertebrados más numerosos de la biosfera, pero también los grandes desconocidos del océano abierto, ya que existen lagunas en el conocimiento de su biología, ecología, adaptación y biomasa global.

Peces mesopelágicos capturados durante la expedición Malaspina./ CSIC

Peces mesopelágicos capturados durante la expedición Malaspina./ CSIC

Durante las 32.000 millas náuticas que recorrieron durante la circunnavegación, los científicos de Malaspina, un proyecto liderado por el investigador del CSIC Carlos Duarte, tomaron medidas entre los 40°N y los 40°S, desde los 200 a los 1.000 metros de profundidad, durante el día.

“Malaspina nos ha ofrecido una oportunidad única para evaluar el stock de peces mesopelágicos en el océano. Hasta ahora disponíamos sólo de los datos aportados por la pesca de arrastre. Recientemente se ha descubierto que estos peces son capaces de detectar las redes y huir, lo que convierte a la pesca de arrastre en una herramienta sesgada a la hora de contabilizar su biomasa”, explica Duarte.

Continue reading

El 34% del océano es inaccesible a las especies que migran por causas climáticas

Por su capacidad para reorganizar los sistemas naturales, el cambio climático “es una de las mayores amenazas a la biodiversidad de este siglo, ya que compromete la integridad de los sistemas vivos”. Esta y otras conclusiones se desprenden de un trabajo internacional con participación de investigadores del Consejo Superior de Investigaciones Científicas (CSIC) centrado en la reorganización de la diversidad de las especies. Los científicos, que publican sus resultados en Nature, han empleado la velocidad del cambio climático para derivar la trayectoria de los nichos climáticos de 1960 a 2009 y hasta el año 2100.

Los nichos climáticos se definen como el conjunto de condiciones bióticas y abióticas con las cuales una especie es capaz de mantener estable su población. Según el estudio, las costas actúan de barreras que impiden el paso a las trayectorias de los nichos, mientras que las áreas templadas locales las atraen. Este proceso acaba en la creación de áreas que actúan como fuente de especies que migran con el cambio climático, áreas que funcionan como corredores por los que se desplazan en sus migraciones climáticas, y áreas que actúan como sumideros, donde quedan atrapadas.

Según los datos rastreados entre 1960 y 2009, el 34% del océano es un área fuente y, por tanto, resulta inaccesible a las especies que migran por causas climáticas. Por otro lado, las áreas sumidero, donde las condiciones climáticas locales desaparecen, suponen el 1% del océano.

Continue reading

Impacto del accidente nuclear de Fukushima en España

Modelización de Météo France de la dispersión de elementos radioactivos. WikiCommons.

Modelización de Météo France de la dispersión de elementos radioactivos. WikiCommons.

Investigadores del Centro Nacional de Aceleradores (Universidad de Sevilla-Junta de Andalucía-CSIC) y del grupo de Investigación Física Nuclear Aplicada de la Universidad de Sevilla, en colaboración con miembros de la Universidad de Extremadura y la Universidad Politécnica de Cataluña, han realizado la medida de radioactividad en España procedente de la central nuclear de Fukushima tras su accidente nuclear de 2011, comparándolas con las del accidente de Chernobyl (1986). Las medidas detectadas fueron ínfimas y sin efecto sobre la salud.

Los investigadores españoles realizaron la detección y medida en concentraciones traza de diversos elementos radiactivos artificiales generados en el accidente que afectó a la central nuclear de Fukushima Dai-ichi en marzo de 2011. Las medidas se realizaron en tres puntos distintos del territorio español (Cáceres, Sevilla y Barcelona), que pertenecen al sistema de vigilancia radioactiva medioambiental nacional, el cual es auspiciado y financiado por el Consejo de Seguridad Nuclear (CSN).

Read more Continue reading

Efecto Casimir sobre proteínas de membrana

Las proteínas que están en las membranas celulares sufrirían la fuerza de Casimir y esto les permitiría comunicarse entre sí y estimular una respuesta frente al ambiente.

Somos la única especie conocida capaz de hacer que el Universo se comprenda a sí mismo o, al menos, que lo pueda intentar. En esta aventura en la que materia se organiza sin parar se han formado estrellas, galaxias, nuevos elementos que no estaban presentes en el Big Bang, planetas con y sin atmósfera, sustancias orgánicas complejas, células, la célula eucariota, seres pluricelulares e incluso criaturas que sueñan con que pueden pensar.

 


These World Wide Web pages are provided as a public service by the National Institute of Standards and Technology (NIST). With the exception of material marked as copyrighted, information presented on these pages is considered public information and may be distributed or copied. Use of appropriate byline/photo/image credits is requested. The drawing was made by Dana Burns, and can also be found in Scientific American, 1985, 253(4), pages 86-90, in the article The molecules of the cell membrane by M.S. Bretscher.
Author
This file is lacking author information.
The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.

Posiblemente estos últimos logros biológicos se han intentado alcanzar en muchos otros sitios del Universo sin conseguirse. El azar ha querido que se dieran aquí. Puede que el Universo esté poblado de vida, pero hasta ahora no tenemos absolutamente ninguna prueba de que eso sea así, sólo la fe puede sustentarlo. Lo más seguro es que si existen otras civilizaciones estén tan lejos de nosotros que nunca podremos entrar en contacto con ellos, tal y como la paradoja de Fermi indica.
Puede que incluso seamos los únicos seres medianamente inteligentes en toda la galaxia. Si esto es así entonces la responsabilidad que recae sobre nosotros es inmensa, pues no podemos delegar nuestro deber en nadie más. También puede ser la única razón por la que un dios justo, de existir, no nos elimine para siempre, ya que con nuestra estulticia hemos obtenido suficientes puntos como ganar el castigo de nuestro propio exterminio.
Nuestro deber tiene que ser conseguir conocimiento, si encima éste está salpimentado con una pizca de sabiduría mejor que mejor. Comprender el Universo y todo lo que contiene y las leyes que lo rigen hasta entender los procesos por los que la materia se organiza para dar lugar a lo que llamamos vida y consciencia puede ser la más noble de nuestras tareas. El premio es encontrar constantemente belleza por el camino.

 
Decía un famoso físico que puesto que él sabía Física y las reacciones químicas estaban controladas por leyes físicas entonces él sabía Química. También hay un chiste que dice que un biofísico habla de Química con los químicos y de Física con los físicos, pero que cuando se junta con otro biofísico sólo habla de mujeres. Pero ambas posturas son incorrectas.
En los últimos tiempos hemos podido ver, incluso en estas mismas páginas, que cada vez que se profundiza lo suficiente en los procesos biológicos se pueden observar fenómenos que se creía que sólo estaban restringidos a los laboratorios más sofisticados. Así por ejemplo, se ha podido ver el papel de las partes más misteriosas de la Mecánica Cuántica en el mundo biológico, como la coherencia cuántica en la fotosíntesis, o la superposición de estados en la orientación magnética en los ojos de algunos pájaros. La evolución habría seleccionado el poder alcanzar tal grado de sensibilidad a los fenómenos cuánticos porque simplemente así algunos procesos son más eficientes. Ya hay expertos que hablan de la “Biología cuántica”.
El último ejemplo de esta Biología cuántica nos llega de algunos físicos norteamericanos que sostiene que en determinados procesos de las membranas celulares está involucrada la fascinante fuerza de Casimir.

 
El efecto Casimir está explicado por la Teoría Cuántica de Campos. La Mecánica Cuántica no era lo suficientemente adecuada como para explicar los fenómenos relativistas y los campos de fuerza, incluso cuando se usaba la ecuación de Dirac en lugar de la ecuación de Schrödinger. Por eso, en el pasado siglo, se desarrolló la Teoría Cuántica de Campos (TCC), en lo que posiblemente fue el último fruto intelectual digno que ha dado la Física hasta ahora.
Según la TCC las partículas se pueden crear y destruir, las fuerzas producidas por los campos se pueden explicar por un intercambio de partículas (bosones) virtuales y el vacío no está realmente vacío, sino que está lleno de partículas virtuales que aparecen y desaparecen sin cesar.

 
Un modelo físico puede ser tan bueno como cualquier otro hasta que las pruebas físicas lo apoyen, entonces hay que tomarlo bien en serio. Hendrik B. G. Casimir y Dirk Polder propusieron en su día que si hay partículas virtuales en el vacío y disponemos dos placas metálicas paralelas entonces las presión ejercida por los fotones virtuales del espacio entre placas es menor que la que presión que ejercen los que están fuera y entonces aparece una fuerza que tiende a juntar las placas. La predicción se pudo confirmar años más tarde cuando se pudo medir la fuerza de Casimir en el laboratorio.
Ahora unos físicos de las universidades de Cornell y Michigan proponen que las proteínas que están en las membranas celulares sufren fuerza de Casimir y que esto les permite comunicarse entre sí y estimular la respuesta, por ejemplo, de la célula a los alergenos como el polen.
Según la teoría del mosaico fluido las membranas celulares están formadas por lípidos, pero en esta capa lipídica hay proteínas que están embebidas y que se mueven libremente a través de ella. Algunas de estas proteínas tienen funciones esenciales, como el de hacer de bombas de iones y así mantener el equilibrio osmótico o mantener dentro a los electrolitos adecuados y no a otros. Hay muchas otras funciones que pueden realizar y para cada una de ellas está la proteína específica. En un principio se creía que la distribución de lípidos era uniforme, pero ulteriores investigaciones demostraron que se formaban estructuras distintivas cientos de veces más grandes que las moléculas de lípidos individuales. Lo que no se entendía bien era de dónde venía la energía para mantener esas estructuras.
Sarah Veatch y sus colaboradores demostraron en 2008 que por encima de los 25 grados centígrados la membrana de células aisladas de mamífero está en una sola fase, mientras que por debajo de esa temperatura se produce una separación en dos fases distintas compuestas de diferentes lípidos y proteínas. Es decir, había un punto crítico por debajo del cual aparecían parches fluctuantes de una segunda fase que crecían en tamaño. Estas fluctuaciones medían varias micras de anchura y eran visibles con el microscopio óptico. No requerían grandes cantidades de energía (relativa) para formarse.

 
Veatch, Benjamin Machta y James Sethna quisieron entender el propósito de esta criticidad. Descubrieron que ciertas proteínas se veían atraídas hacia una de las fases mientras que las demás lo hacía hacia la segunda. Veatch sugiere que estas proteínas interactúantes podrían dar lugar a un fenómeno de cascada para así trasmitir señales, como información acerca de los componentes presentes en la vecindad celular, desde los receptores proteicos de la membrana hasta el interior celular. Esta información podría usarse, por ejemplo, para decidir si es un buen momento para la división celular o si es seguro moverse hacia unos nutrientes. Veatch cree que una de las razones por las que la membrana tiene esta criticidad fluctuante es para facilitar los pasos previos en el envío de señales.
Machta ha calculado las fuerzas de Casimir entre las proteínas de la membrana y ha encontrado, como esperaba, que estas fuerzas son atractivas para proteínas similares y repulsivas para las que son diferentes. Además, la energía potencial que esto proporciona es varias veces la energía térmica de las proteínas a lo largo de distancias de decenas de nanometros. Las fuerzas electrostáticas son más intensas, pero son de más corto alcance, en torno al nanometro. La razón de que esta criticidad esté tan finamente ajustada se debería a que así las células han conseguido maximizar las fuerzas de largo alcance entre proteínas.

 
“Es sorprendente en cuántas reacciones en las células están involucradas energías de la misma magnitud que las fluctuaciones térmicas. Creemos que esta es la manera de que tiene la célula de ser ahorradora. ¿Para qué pagar más?”, dice Sethna.
Los investigadores sospechan que la existencia de estas fuerzas de Casimir explicarían por qué las células bajas en colesterol (el colesterol es fundamental para el funcionamiento celular y no tiene que ver con el que nos detectan en sangre y que es un indicador de riesgo de arteriosclerosis) no funcionan como lo deberían de hacer, pues la retirada de este colesterol saca a la membrana fuera de su punto crítico.
Además, especulan que todo esto tendría un papel incluso en el estornudo. Cuando los receptores proteicos de una célula inmunitaria detectan un alergeno, como un grano de polen, se agregan y esto dispara las histaminas que producen el estornudo. Sethna especula que quizás el alergeno simplemente cambia la preferencia del receptor por una fase u otra de la membrana.
Este equipo de investigadores espera que el estudio sirva para obtener aplicaciones médicas, pues los defectos en las membranas pueden contribuir a la aparición de enfermedades como el cáncer o las enfermedades autoinmunes, inflamatorias, etc. “Este trabajo arroja luz sobre cómo los lípidos pueden impactar sobre ciertos aspectos de estas enfermedades. En el futuro imagino medicamentos que específicamente usen a ciertos lípidos como blancos para regular la interacción entre proteínas para así tratar enfermedades humanas”, dice Veatch. Sin embargo, pasará tiempo hasta que semejantes aplicaciones se hagan realidad.

 
Sethna señala que los biólogos siempre tienden a explicar cómo funcionan las células en función de un resultado de la evolución. La evolución ha podido empujar a las células hasta alcanzar el punto crítico, pero una vez ahí se pueden usar otras teorías para así poder explicar muchos comportamientos sin necesidad de recurrir reiteradamente a la evolución.
De todos modos, queda mucha investigación por hacer hasta que se acepten estas nuevas ideas. Algún experto del campo ya señala que no está claro que la membrana celular de un tejido se comporte de igual manera cuando forma parte de éste que cuando se hacen experimentos con una células estando aislada del resto. Pero si asumimos que esta teoría es cierta no podemos por menos que admirar la belleza que entraña.
Fuente  http://neofronteras.com/?p=3942

Fuentes y referencias: Nota en PhysicsWorld. Artículo original. Nota en Nature sobre Biología cuántica. Ilustración: esquema de una membrana celular, Wikimedia Commons.

Nobel de Física 2012 para el control de las partículas en el mundo cuántico

La Real Academia Sueca de las Ciencias ha anunciado que el Premio Nobel de Física de este año lo comparten el investigador francés Serge Haroche y el estadounidense David J. Wineland “por sus métodos experimentales innovadores que permiten la medición y manipulación de sistemas cuánticos individuales”.

Los científicos Serge Haroche, profesor del Collège de France and Ecole Normale Supérieure en Paris (Francia), y David J. Wineland, investigador del National Institute of Standards and Technology (NIST) y la Universidad de Colorado Boulder (EEUU), son los ganadores del Premio Nobel de Física 2012.

 

Así lo ha anunciado hoy la Real Academia Sueca de las Ciencias, quien reconoce los trabajos que han desarrollado los dos galardonados en el campo de la física cuántica. En concreto, han inventado y desarrollado métodos para medir y manipular partículas individuales sin alterar su naturaleza cuántica.

Las reglas de la física clásica dejan de funcionar en la escala de las partículas individuales de luz o materia. Es entonces cuando entra en juego la física cuántica, pero las partículas individuales no son fáciles de aislar de su entorno y enseguida pierden sus misteriosas propiedades cuánticas según interaccionan con el exterior.

Hasta ahora estos fenómenos no se podían observar directamente, y solo se formulaban planteamientos teóricos. Pero los trabajos de los dos galardonados han demostrado con ingeniosas técnicas de laboratorio que se pueden cuantificar y controlar los frágiles estados cuánticos.

http://teknociencia.com/clip/video/14AKO6N6SBOA/HISTORIA-DE-LA-FISICA-CUANTICA

http://teknociencia.com/clip/video/YXOUAK648A39/Michio-Kaku-La-revolucion-cuantica

Wineland atrapa iones –átomos cargados eléctricamente–, controlándolos y midiéndolos con partículas de luz, con fotones. Sin embargo, Haroche utiliza el enfoque opuesto: manipula y mide fotones mediante el envío de átomos a través de una trampa.

El investigador francés, que nació el 11 de septiembre de 1944 en Casablanca (actual Marruecos), es principalmente conocido por demostrar la ‘decoherencia cuántica’ (explica la mecánica que ocurre a escala ‘micro’ en física cuántica). Haroche obtuvo su licenciatura en la Universidad Pierre y Marie Curie de París en 1971.

Read more Continue reading

La densidad de la ‘Posidonia’ del Mediterráneo podría disminuir un 90% a mediados de siglo

Un estudio realizado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) revela que la densidad de plantas de la especie marina Posidonia oceanica podría disminuir un 90% a mediados de este siglo debido al calentamiento del agua superficial del mar Mediterráneo. Los resultados, que aparecen publicados en el último número de la revista Nature Climate Change, apuntan a una “extinción funcional” de la especie con un escenario “moderadamente optimista” de emisión de gases de efecto invernadero.

El trabajo, elaborado en el marco de los proyectos españoles VANIMEDAT-2, MEDEICG, ESCENARIOS y el europeo SESAME, examina la evolución temporal de la temperatura superficial máxima esperada durante el siglo XXI en el Mediterráneo occidental. Para ello, los científicos han empleado proyecciones de diez modelos climáticos globales y dos modelos regionales.

Read more Continue reading

Encuentran virus quimera

Hallan virus en un lago hidrotermal cuyo genoma procede de la hibridación de un virus de ADN y uno de ARN.

Casi todos los seres vivos están basados en el ADN como molécula usada para almacenar la información, pero emplean el ARN como molécula para transferir y transcribir esa información y sintetizar así proteínas. Sin embargo, algunos virus usan el ARN para almacenar información. Todavía hay cierto debate sobre si podemos considerar a los virus como algo vivo o no. Los virus no se reproducen por sí mismos, sino que parasitan el núcleo celular de otro ser para replicar su material genético y que dicha célula haga copias del virus hasta la destrucción de la misma. Si el virus es un adenovirus introduce su ADN en el núcleo y si es un retrovirus introduce su ARN y una enzima (transcriptasa inversa) traduce ese ARN a ADN para que el núcleo celular entienda la información. Parecía que la distinción entre ambos tipos de virus estaba muy clara hasta ahora.

En un lago de aguas hidrotermales del parque Lassen en California (Boiling Springs Lake) unos científicos de Portland State University han descubierto una nueva clase de genoma vírico que parece ser el producto de la recombinación de dos virus: un virus de ADN y un virus de ARN. Sería una quimera natural nunca vista hasta el momento.

Read more Continue reading