Tag Archives: Fisica Nuclear

Desarrollan una técnica para analizar el carbono 14 en muestras líquidas

Investigadores del Centro Nacional de Aceleradores (CNA, centro mixo Universidad de Sevilla-Junta de Andalucía y CSIC) y la Universidad de Sevilla (US) emplean un sistema que permite convertir muestras líquidas en grafito para analizar la presencia de carbono 14 e indagar su antigüedad y presencia de material orgánico. Estos análisis se realizan con el sistema de espectrometría de masas con aceleradores AMS del CNA.

La determinación de carbono 14 es una herramienta para conocer la presencia de elementos biológicos en muestras como las mezclas biodiésel u otras muestras líquidas de origen total o parcialmente orgánico, como aceites vegetales.

El carbono 14 es un isótopo radioactivo del carbono que puede ser empleado como testigo de la antigüedad de una muestra de origen orgánico, o para comprobar qué cantidad de material orgánico hay en muestras que mezclen materiales orgánicos y derivados del petróleo. A la hora de estudiar estos puntos, es importante el estado en el que se presenta ese elemento, es decir, si es sólido o líquido.

Según Javier Santos, responsable del Servicio de Datación por carbono 14 del Centro Nacional de Aceleradores, “algunas muestras pueden presentarse en estado líquido, por lo que requieren una manipulación más cuidadosa que los productos sólidos”.

En este estudio, presentado este verano en el congreso internacional AMS 13, se ha probado la posibilidad de emplear un sistema de grafitización, es decir, un equipo que permite convertir las muestras en grafito, para poder preparar muestras válidas para ser analizadas a partir de muestras líquidas. Dichas muestras han sido analizadas con el sistema de espectrometría de masas con aceleradores del CNA, AMS.

Durante el estudio se ha comprobado que se obtiene muy buena reproducibilidad en la preparación de réplicas y que el nivel de contaminación introducido en el proceso es muy reducido.

http://www.i-cpan.es

http://www.fpa.csic.es

LHCb observa dos nuevas partículas bariónicas

La colaboración del experimento LHCb del Gran Colisionador de Hadrones (LHC) del CERN anunció hoy el descubrimiento de dos nuevas partículas de la familia bariónica, las formadas por quarks. Las partículas, conocidas como Xi_b’- y Xi_b*-, fueron predichas por el modelo de quarks, pero no habían sido vistas hasta ahora. Una partícula similar, Xi_b*0, fue encontrada en 2012 por el experimento CMS. La colaboración LHCb ha enviado un artículo informando del hallazgo a la revista Physical Review Letters.

Al igual que los protones que acelera el LHC, las nuevas partículas son bariones hechos de tres quarks y unidos por la fuerza nuclear fuerte (una de las cuatro interacciones fundamentales en la naturaleza). Sin embargo, los tipos de quarks son diferentes: las nuevas partículas Xib contienen ambas un quark belleza (b), un extraño (s) y uno abajo (d), mientras que el protón está formado por dos quarks arriba (u) y un abajo (d). Debido a la masa de los quarks b, estas partículas son seis veces más masivas que un protón.

Continue reading

Tormenta de rayos gamma en el agujero negro

Los telescopios MAGIC, en el Observatorio del Roque de los Muchachos, en la isla de La Palma, han registrado las llamaradas de rayos gamma más rápidas vistas hasta la fecha, producidas en las cercanías de un agujero negro supermasivo. Los científicos explican este fenómeno mediante un mecanismo similar al que produce los relámpagos en una tormenta. Este resultado, con una importante participación española, aparece publicado hoy en la revista Science.

En la noche del 12 al 13 de Noviembre de 2012 los telescopios MAGIC de rayos gamma, en el Observatorio del Roque de los Muchachos del Instituto de Astrofísica de Canarias (IAC), se encontraban observando el cúmulo de galaxias de Perseo (situado a una distancia de unos 260 millones de años-luz), cuando detectaron este fenómeno insólito proveniente de una de las galaxias del cúmulo, conocida como IC310. Al igual que muchas otras galaxias, IC310 alberga en su centro un agujero negro supermasivo (varios cientos de millones de veces más pesado que el Sol) el cual, de forma esporádica, produce intensas llamaradas de rayos gamma. Lo que sorprendió a los científicos en esta ocasión fue la extrema brevedad de dichas llamaradas, con una duración de tan solo unos pocos minutos.

Continue reading

Determinan una propiedad de la materia tras el Big Bang

Una colaboración internacional donde participan físicos de la Universidade de Santiago de Compostela ha publicado recientemente en Physical Review C la medición más precisa hasta la fecha de una propiedad clave del plasma de quarks y gluones, el estado de la materia que dominó el Universo justo después del Big Bang. Este resultado revela la estructura microscópica de este fluido, un “líquido perfecto” desde el punto de vista de su comportamiento físico. Los resultados se obtuvieron mediante el análisis de datos de las colisiones entre núcleos pesados obtenidos en el Gran Colisionador de Hadrones (LHC) del CERN y el Relativistic Heavy-ion Collider (RHIC) en el Laboratorio de Brookhaven (EE.UU.).

ALICE-hirezf

La colaboración JET es un grupo de físicos teóricos formado principalmente por miembros de universidades de Estados Unidos donde participan varios miembros asociados, entre ellos Néstor Armesto y Carlos Salgado (Universidade de Santiago de Compostela). Su objetivo es extraer las propiedades del llamado plasma de quarks y gluones, el estado de la materia instantes después del Big Bang, cuando la temperatura y densidad eran tan altas que no permitían la formación de protones o neutrones, constituyentes del núcleo atómico.
Continue reading

Lockheed Martin anuncia un nuevo diseño de reactor de fusion

La compañía Lockheed Martin dice que podrá tener un reactor de fusión comercial de 100 Mw de potencia en 10 años.

La compañía Lockheed Martin ha declarado recientemente que va a desarrollar un nuevo tipo de reactor de fusión nuclear por confinamiento magnético mucho más pequeño, compacto y eficiente que los tokamaks.
La idea es la de siempre: mantener un plasma hidrógeno muy caliente en donde se den reacciones fusión nuclear. Como la temperatura necesaria para esto es enorme (100 millones de grados), no se puede construir un contenedor para el plasma hecho de material normal y, en su lugar, se usa una “botella” magnética.

Continue reading

Científicos españoles analizan las posibilidades del LHC en 2015

El nuevo arranque del gran colisionador de hadrones del CERN durante el año que viene, los experimentos sobre neutrinos, el observatorio de rayos gamma CTA y la presencia de investigadores españoles en el laboratorio de física nuclear FAIR serán algunos de los temas que trataron los cerca de 200 investigadores que asisten en Sevilla a la reunión anual del Centro Nacional de Física de Partículas, Astropartículas y Nuclear. La divulgación científica y la transferencia tecnologica también estarán presentes en las jornadas.

Expertos españoles en la física del Gran Colisionador de Hadrones (LHC), la investigación de la estructura nuclear y los experimentos para descubrir el 95% del universo ‘invisible’ se reúnen la semana próxima en Sevilla en las VI Jornadas del Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN). Este congreso, que se celebra por primera vez en la capital hispalense, congrega a 200 investigadores en estos ámbitos de la física, que discutirán sobre los principales avances en sus respectivos campos.

Entre los principales temas a tratar está el programa de investigación previsto para el LHC, el mayor acelerador de partículas del mundo operado por el CERN, que se vuelve a poner en marcha a principios de 2015 tras una larga parada de mantenimiento. Después de descubrir el bosón de Higgs en 2012 con solo dos años de funcionamiento, aparecen nuevos retos como la búsqueda de la supersimetría o la detección de materia oscura. Doscientos investigadores y técnicos españoles participan en el LHC y sus experimentos, con el apoyo del CPAN.
Continue reading

CERN prepares its long-term future

CERN-FCC

Geneva, 6 February 2014. Particle physics takes the long-term view. Originally conceived in the 1980s, the LHC took another 25 years to come into being. This accelerator, which is unlike any other, is just at the start of a programme which is expected to run for another 20 years. Even now, as consolidation work aimed at a restart in 2015 continues, detailed plans are being hatched for a large-scale upgrade to increase luminosity and thereby exploit the LHC to its full potential. The HL (High Luminosity) LHC is CERN1’s number-one priority and will increase the number of collisions accumulated in the experiments by a factor of ten from 2024 onwards.

Even though the LHC programme is already well defined for the next two decades, the time has come to look even further ahead, so CERN is now initiating an exploratory study for a future long-term project centred on a new-generation circular collider with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, whose collision energies will reach 14 TeV, such an accelerator would allow particle physicists to push back the boundaries of knowledge even further. The Future Circular Colliders (FCC) programme will focus especially on studies for a hadron collider, similar to the LHC, capable of reaching unprecedented energies in the region of 100 TeV.

The FCC study will be a global venture for particle physics and stems from the recommendation in the European Strategy for Particle Physics, published in May 2013, that a feasibility study be conducted on future fundamental research projects at CERN. It will be conducted over the coming five years and starts with an international kick-off meeting at the University of Geneva from 12 to 15 February.

The FCC will thus run in parallel with another study that has already been under way for a number of years, the Compact Linear Collider, or “CLIC”, another option for a future accelerator at CERN.  The aim of the CLIC study is to investigate the potential of a linear collider based on a novel accelerating technology.

“We still know very little about the Higgs boson, and our search for dark matter and supersymmetry continues. The forthcoming results from the LHC will be crucial in showing us which research paths to follow in the future and what will be the most suitable type of accelerator to answer the new questions that will soon be asked,” says Sergio Bertolucci, Director for Research and Computing at CERN.

“We need to sow the seeds of tomorrow’s technologies today, so that we are ready to take decisions in a few years’ time,” adds CERN’s Director for Accelerators and Technology, Frédérick Bordry.

The goal of the two studies is to examine the feasibility of the various possible machines, to evaluate their costs and to produce a conceptual design report for the FCC and elaborate on the one already produced for CLIC in time for the next European Strategy update around 2018/2019.

For more information on:

Continue reading