Tag Archives: Geofisica

El manto de la litosfera situado bajo los márgenes continentales es más delgado de lo que se pensaba

Un equipo internacional con participación del Consejo Superior de Investigaciones Científicas (CSIC) ha estudiado la configuración de la litosfera en el Sur de la Península Ibérica y ha descubierto que el manto litosférico situado bajo los márgenes continentales es más delgado de lo que se pensaba. El trabajo, publicado en Nature, describe un proceso de pérdida de litosfera continental durante la subducción de la corteza oceánica. El trabajo contribuye al conocimiento de los mecanismos de interacción implicados en la colisión entre las placas europea y africana.

Los científicos han caracterizado la litosfera en el margen activo en el entorno del arco de Gibraltar y Caribe con el objetivo de comprender el ciclo evolutivo de la litosfera terrestre subducida en ambientes tectónicos singulares.

“El estudio es importante porque aporta nuevas ideas a la teoría de la evolución de la corteza subducida. La geometría, ambiente tectónico y configuración de las placas continentales en el estrecho de Gibraltar son únicos. Es una zona con forma de arco cóncavo hacia el Este localizada en el límite entre la placa europea y la africana”, precisa el investigador del CSIC Ramón Carbonell, del Instituto de Ciencias de la Tierra Jaume Almera.

Continue reading

El “punto caliente” de metano en Estados Unidos es más grande que lo que se esperaba

Según un nuevo estudio de datos satelitales llevado a cabo por científicos de la NASA y de la Universidad de Michigan, un pequeño “punto caliente” ubicado en el sudoeste de Estados Unidos es responsable de la producción de la mayor concentración de metano, un gas de efecto invernadero, que se ha visto sobre Estados Unidos (más que el triple de los cálculos estándar hechos en la Tierra).

El metano es muy eficiente para atrapar el calor en la atmósfera y, al igual que el dióxido de carbono, contribuye al calentamiento global. El “punto caliente”, ubicado cerca de las Cuatro Esquinas, el punto de intersección que comprende Arizona, Colorado, Nuevo México y Utah, abarca solamente alrededor de 6.500 kilómetros cuadrados (2.500 millas cuadradas), o la mitad del tamaño de Connecticut.

El área de las Cuatro Esquinas (en color rojo) es el “punto caliente” más importante de Estados Unidos respecto de las emisiones de metano. En este mapa se muestra cuánto variaron las emisiones de las concentraciones históricas promedio registradas entre 2003 y 2009 (los colores oscuros están por debajo del promedio; los colores más claros están por encima). Crédito de la imagen: NASA/JPL-Caltech/Universidad de Michigan

El área de las Cuatro Esquinas (en color rojo) es el “punto caliente” más importante de Estados Unidos respecto de las emisiones de metano. En este mapa se muestra cuánto variaron las emisiones de las concentraciones históricas promedio registradas entre 2003 y 2009 (los colores oscuros están por debajo del promedio; los colores más claros están por encima). Crédito de la imagen: NASA/JPL-Caltech/Universidad de Michigan

En cada uno de los siete años estudiados en el período 2003-2009, el área liberó alrededor de 0.59 millones de toneladas métricas de metano a la atmósfera. Esto es casi 3,5 veces el cálculo para la misma área registrado en la muy utilizada base de datos llamada Emissions (Emisiones, en idioma español) de la Unión Europea para la Investigación Atmosférica Global (Global Atmospheric Research, en idioma inglés).

En el estudio publicado hoy en línea en la revista Geophysical Research Letters, los investigadores utilizaron observaciones llevadas a cabo por el instrumento denominado Espectrómetro de Exploración de Imágenes de la Absorción para la Cartografía Atmosférica (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography o SCIAMACHY, por su acrónimo en idioma inglés), de la Agencia Espacial Europea.

Continue reading

El satélite que observará la lluvia y las tormentas está listo para despegar

Como comentó alguna vez Arthur C. Clarke: “Qué inapropiado es llamar a este planeta Tierra cuando con claridad es un Océano”.

De hecho, la Tierra es un mundo de agua. El suelo seco que la mayoría de nosotros llamamos hogar, cubre menos de un tercio de la superficie del planeta. El agua se mueve alrededor de la Tierra con una circulación tan compleja como la del cuerpo humano. La evaporación, la condensación y la precipitación transportan calor y humedad de un lugar a otro, lo que hace posible la vida y crea las condiciones propicias para el tiempo y el clima.

“El ciclo del agua, que es tan familiar para todos los jóvenes científicos en edad escolar, es uno de los elementos más importantes y dinámicos de nuestros estudios de la Tierra”, dice John Grunsfeld, quien es el administrador adjunto del Directorio de Misiones Científicas de la NASA, en Washington, D.C. “Estamos por lanzar un nuevo satélite que nos brindará información decisiva sobre cómo funciona el ciclo del agua”.

Video de ScienceCast, de la NASA, denominado “Follow the Water” (“Sigamos al agua”, en idioma español), se presenta la misión del Observatorio de Medición de la Precipitación Global.

Se llama Observatorio de Medición de la Precipitación Global (Global Precipitation Measurement Core Observatory o GPM, por su sigla en idioma inglés). Fue construido por la NASA y la JAXA, la Agencia de Exploración Aeroespacial de Japón. El lanzamiento del satélite está previsto para el 27 de febrero a la 1 de la tarde, hora oficial del Este, desde el Centro Espacial Tanegashima, en Japón.

El GPM volará a 407 kilómetros (253 millas) por encima de la Tierra, en una órbita con inclinación de 65 grados hacia el ecuador. Esta órbita permite que el satélite monitorice las precipitaciones desde el Ártico hasta la Antártida. Trabaja conectado en red con otros satélites, de los cuales algunos ya están en órbita y otros cuyo lanzamiento está planeado para el futuro. El GPM puede medir la lluvia y la nieve cada tres horas en cualquier lugar del mundo.

“El tipo de datos que recibiremos de la red del GPM no tiene precedentes”, dice Gail Skofronick-Jackson, un científico del proyecto GPM, en el centro Goddard. “Podremos observar características detalladas de los sistemas de lluvia y nieve que son extremadamente importantes para mejorar las predicciones meteorológicas y climáticas”.

Las operaciones normales comenzarán aproximadamente 60 días después del lanzamiento. Los datos serán transmitidos a través del Sistema de Satélites desde Seguimiento y Retransmisión de Datos (Tracking and Data Relay Satellite System, en idioma inglés), de la NASA, hacia el Centro de Procesamiento de Precipitaciones (Precipitation Processing Center , en idioma inglés), de la NASA, ubicado en Greenbelt, Maryland, donde serán procesados y distribuidos por Internet.

El GPM lleva dos instrumentos para medir la lluvia y la precipitación de nieve: un Radar de Precipitaciones de Frecuencia Dual y el Generador de Imágenes por Microondas del GPM. En comparación con los instrumentos que volaron con anterioridad en satélites de ciencias de la Tierra, el radar de precipitaciones y el generador de imágenes por microondas del GPM pueden ver más profundamente dentro de las nubes y detectar partículas más pequeñas de lluvia, hielo y nieve. Asimismo, el radar podrá formar perfiles de precipitación en 3D y revelar el funcionamiento interno de los sistemas de tormentas con nubes. Por su parte, el generador de imágenes por microondas no solo medirá lluvias intensas y moderadas, como lo hacen otros satélites, sino también lloviznas y nevadas leves (que son dos formas de precipitación importantes en las cordilleras y en las zonas de latitudes elevadas de América del Norte, Europa y Asia).

Grunsfeld llega a la conclusión de que lo que aprendamos de la red del GPM “nos ayudará a hacer frente a futuros fenómenos meteorológicos extremos y a manejar los recursos de agua dulce”, en un mundo cambiante.

Hagamos pues ese mundo de agua.

http://ciencia.nasa.gov/

Créditos y Contactos
Funcionaria Responsable de NASA: Ruth Netting
Editor de Producción: Dr. Tony Phillips
Traducción al Español: Angela Atadía de Borghetti
Editora en Español: Angela Atadía de Borghetti
Formato: Angela Atadía de Borghetti

Oceano, Clima y Tectónica de placas

GLACIACIONES, CAMBIOS CLIMÁTICOS Y EVIDENCIAS DE LOS MISMOS EN LA HISTORIA DE LA TIERRA

El clima es un promedio, a una escala de tiempo dada, del tiempo atmosférico. Los distintos tipos climáticos y su localización en la superficie terrestre obedecen a ciertos factores, siendo los principales, la latitud geográfica, la altitud, la distancia al mar, la orientación del relieve terrestre con respecto a la insolación (vertientes de solana y umbría) y a la dirección de los vientos (vertientes de Sotavento y barlovento) y por último, las corrientes marinas. Estos factores y sus variaciones en el tiempo producen cambios en los principales elementos constituyentes del clima que también son cinco: temperatura atmosférica, presión atmosférica, vientos, humedad y precipitaciones.

Pero existen fluctuaciones considerables en estos elementos a lo largo del tiempo, tanto mayores cuanto mayor sea el período de tiempo considerado. Estas fluctuaciones ocurren tanto en el tiempo como en el espacio. Las fluctuaciones en el tiempo son muy fáciles de comprobar: puede presentarse un año con un verano frío (por ejemplo, el sector del turismo llegó a tener fuertes pérdidas hace unos años en las playas españolas debido a las bajas temperaturas registradas y al consiguiente descenso del número de visitantes, y el invierno del 2009 al 2010 ha sido mucho más frío de lo normal, no solo en España, sino en toda Europa). También las fluctuaciones espaciales son aún más frecuentes y comprobables: los efectos de lluvias muy intensas en la zona intertropical del hemisferio sur en América (inundaciones en el Perú y en el sur del Brasil) se presentaron de manera paralela a lluvias muy escasas en la zona intertropical del Norte de América del Sur (especialmente en Venezuela y otras áreas vecinas).

Un cambio en la emisión de radiaciones solares, en la composición de la atmósfera, en la disposición de los continentes, en las corrientes marinas o en la órbita de la Tierra puede modificar la distribución de energía y el equilibrio térmico, alterando así profundamente el clima cuando se trata de procesos de larga duración.

Animación del mapa mundial de la temperatura media mensual del aire de la superficie.
Estas influencias se pueden clasificar en externas e internas a la Tierra. Las externas también reciben el nombre de forzamientos dado que normalmente actúan de manera sistemática sobre el clima, aunque también las hay aleatorias como es el caso de los impactos de meteoritos (astroblemas). La influencia humana sobre el clima en muchos casos se considera forzamiento externo ya que su influencia es más sistemática que caótica pero también es cierto que el Homo sapiens pertenece a la propia biosfera terrestre pudiéndose considerar también como forzamientos internos según el criterio que se use. En las causas internas se encuentran una mayoría de factores no sistemáticos o caóticos. Es en este grupo donde se encuentran los factores amplificadores y moderadores que actúan en respuesta a los cambios introduciendo una variable más al problema ya que no solo hay que tener en cuenta los factores que actúan sino también las respuestas que dichas modificaciones pueden conllevar. Por todo eso al clima se le considera un sistema complejo. Según qué tipo de factores dominen la variación del clima será sistemática o caótica. En esto depende mucho la escala de tiempo en la que se observe la variación ya que pueden quedar patrones regulares de baja frecuencia ocultos en variaciones caóticas de alta frecuencia y viceversa. Puede darse el caso de que algunas variaciones caóticas del clima no lo sean en realidad y que sean catalogadas como tales por un desconocimiento de las verdaderas razones causales de las mismas.
1 Causas de los cambios climáticos
1.1 Influencias externas
1.1.1 Variaciones solares
1.1.2 Variaciones orbitales
1.1.3 Impactos de meteoritos
1.2 Influencias internas
1.2.1 La deriva continental
1.2.2 La composición atmosférica
1.2.3 Las corrientes oceánicas
1.2.4 El campo magnético terrestre
1.2.5 Los efectos antropogénicos
1.2.6 Retroalimentaciones y factores moderadores
1.3 Incertidumbre de predicción
2 Cambios climáticos en el pasado
2.1 La paradoja del Sol débil
2.2 El efecto invernadero en el pasado
2.3 El CO2 como regulador del clima
2.4 Aparece la vida en la Tierra
3 Máximo Jurásico
3.1 Las glaciaciones del Pleistoceno
3.2 El mínimo de Maunder
4 El cambio climático actual
4.1 Combustibles fósiles y calentamiento global
4.2 Planteamiento de futuro
4.3 Agricultura
5 Clima de planetas vecinos
6 Materia multidisciplinar
7 Océanos
7.1 El aumento de la temperatura
7.2 Sumideros de carbono y acidificación
7.3 El cierre de la circulación térmica

Una glaciación, o edad de hielo, es un periodo de larga duración en el cual baja la temperatura global del clima de la Tierra, dando como resultado una expansión del hielo continental de los casquetes polares y los glaciares.
¿Qué causa el comienzo de las condiciones glaciares? Dos glaciaciones han sido especialmente dramáticas en la historia de la Tierra: la Tierra Bola de Nieve, que se inició a finales del Proterozoico, hace aproximadamente unos 700 millones de años, y la glaciación wisconsiense o de Würm, acaecida a finales del Pleistoceno. Otra edad glacial de especial impacto en la historia reciente fue la Pequeña Edad de Hielo, que abarcó desde comienzos del siglo XIV hasta mediados del XIX.

Continue reading

La sonda 'Dawn' revela más secretos del asteroide gigante Vesta

El asteroide Vesta presenta una composición superficial variada, aunque abundan los minerales ricos en hierro y magnesio, según los últimos datos facilitados por la sonda Dawn de la NASA. Hace unos años científicos españoles anunciaron que el meteorito que cayó en mayo de 2007 en Puerto Lápice (Ciudad Real) podría proceder de este asteroide gigante.

Los descubrimientos aportados por la nave Dawn de la NASA revelan nuevos detalles sobre el asteroide gigante Vesta, incluyendo su variada composición superficial, bruscos cambios de temperatura y pistas sobre su estructura interna. Los datos, que se presentaron el pasado jueves en la reunión de la Unión Europea de Geociencias en Viena (Austria), pueden ayudar a los científicos a comprender mejor la formación del sistema solar primitivo.

Se da la circunstancia de que una roca de Vesta pudo ser el meteorito que cayó en Puerto Lápice, en Ciudad Real, el 10 de mayo de 2007. El año siguiente, científicos del CSIC, la Universidad Politécnica de Catalunya y la Universidad de Huelva anunciaron que, tanto la caracterización mineralógica como la composición química e isotópica de los fragmentos encontrados, mostraban que se trataba de una ‘eucrita’ con un origen “muy probable” de la superficie de Vesta.

Ahora, las imágenes de la cámara de Dawn y el espectrómetro de cartografiado visible e infrarrojo, tomadas a 680 kilómetros y 210 kilómetros de altura, muestran gran variedad de minerales y rocas en esa superficie. Las fotografías codificadas en falso color facilitan el estudio de la composición de Vesta y permiten identificar material que una vez estuvo fundido bajo su superficie.

Los científicos también han observado brechas, rocas fundidas durante el impacto de escombros espaciales. Muchos de los materiales detectados están compuestos por minerales ricos en magnesio y hierro, que a menudo se encuentran en las rocas volcánicas de la Tierra. Las imágenes también revelan depósitos suaves como estanques, que podrían haberse formado cuando el polvo fino que se creó durante los impacto se asentó en las regiones bajas.

Sorprendente variedad de procesos

“Dawn ahora nos permite estudiar la variedad de mezclas de roca que componen la superficie de Vesta con gran detalle”, comenta Harald Hiesinger, científico de la Universidad de Münster (Alemania). “Las imágenes sugieren una sorprendente variedad de procesos que componen la superficie de Vesta”.

En el cráter Tarpeya, cerca del polo sur del asteroide, la sonda reveló bandas de minerales que aparecen como capas brillantes en las laderas escarpadas del cráter. Los estratos expuestos permiten observar más atrás en la historia geológica del asteroide.

Las capas más superficiales apoyan la evidencia de la contaminación de la superficie por las rocas espaciales que bombardean la superficie de Vesta, pero las de abajo preservan casi todas las características originales. Los deslizamientos frecuentes por las laderas de los cráteres también han puesto de manifiesto otros patrones minerales ocultos.

“Estos resultados sugieren que la piel de Vesta se está renovando constantemente”, destaca María Cristina De Sanctis, líder del equipo del espectrómetro ‘mapeador’ visual e infrarrojo con base en Instituto Nacional para la Astrofísica de Italia.

Dawn también ha facilitado una vista casi en 3-D de la estructura interna de Vesta. Al hacer mediciones ultrasensibles de atracción gravitatoria del asteroide en la nave espacial, se pueden detectar densidades inusuales dentro de sus capas exteriores.

Los datos muestran ahora una zona anómala cerca del polo sur de Vesta, lo que sugiere que el material más denso de las capas inferiores se ha expuesto por el impacto que creó una cuenca denominada Rheasilvia. El material más joven y ligero que recubre otras capas de la superficie de Vesta se ha lanzado hacia fuera en la cuenca.

http://www.agenciasinc.es

.Localización: Internacional
Fuente: NASA
.

La conductividad del hierro en el núcleo terrestre es mayor de lo que se creía

Las aleaciones que forman la parte más interna de la Tierra tienen una conductividad dos o tres veces mayor de lo que se pensaba. Estos resultados pueden implicar cambios en la historia del planeta.

La Tierra tiene un corazón de hierro sólido rodeado por una capa líquida y caliente del mismo material, que está en constante agitación. Se cree que su intensa actividad es responsable del campo magnético terrestre. Ahora, nuevos datos sobre el hierro del núcleo externo podrían hacer reescribir los modelos científicos sobre la historia terrestre y su magnetismo.

“Hemos descubierto que la conductividad térmica y eléctrica del hierro y sus aleaciones en el núcleo de la Tierra son el doble o el triple de lo que se creía hasta ahora” explica a SINC Dario Alfe, primer autor de la investigación, publicada en la revista Nature. Alfe y su equipo han conseguido estos datos mediante precisos cálculos de mecánica cuántica.

Read more Continue reading

Hallada la clave que completa los modelos de los “relámpagos” en la alta atmósfera

Hace dos décadas se descubrió un asombroso fenómeno: se observaron intensos destellos en la mesosfera, una región de la atmósfera situada a partir de los cincuenta kilómetros por encima del suelo y que se creía carente de actividad. Relacionados con los rayos de tormenta pero situados decenas de kilómetros sobre las nubes, resultaba inexplicable que algunos de estos destellos, los conocidos como sprites retardados, se produjeran con retraso con respecto al rayo que los desencadenaba. Un trabajo, desarrollado por los investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC) Alejandro Luque y Francisco J. Gordillo y publicado en Nature Geoscience, aporta la clave que faltaba en los modelos de iniciación de los sprites.

Representación de los tipos de TLEs más frecuentes. Algunos de los nombres fueron tomados de El sueño de una noche de verano, de William Shakespeare, evocando su naturaleza esquiva y misteriosa. Foto2: Secuencia temporal del inicio y desarrollo de un sprite, donde se aprecia la complejidad del fenómeno. Los fotogramas están tomados con una cámara de alta velocidad que toma mil fotogramas por segundo y muestran una porción de la alta atmósfera a alturas de entre cuarenta y cien kilómetros. /H.C. Stenbaek-Nielsen and M.G. McHarg, Journal of Physics D: Applied Physics 41 (2008) 234009.

Read more Continue reading